Pharmacological Inhibition of Caspase-2 Protects Axotomised Retinal Ganglion Cells from Apoptosis in Adult Rats
نویسندگان
چکیده
Severing the axons of retinal ganglion cells (RGC) by crushing the optic nerve (ONC) causes the majority of RGC to degenerate and die, primarily by apoptosis. We showed recently that after ONC in adult rats, caspase-2 activation occurred specifically in RGC while no localisation of caspase-3 was observed in ganglion cells but in cells of the inner nuclear layer. We further showed that inhibition of caspase-2 using a single injection of stably modified siRNA to caspase-2 protected almost all RGC from death at 7 days, offering significant protection for up to 1 month after ONC. In the present study, we confirmed that cleaved caspase-2 was localised and activated in RGC (and occasional neurons in the inner nuclear layer), while TUNEL⁺ RGC were also observed after ONC. We then investigated if suppression of caspase-2 using serial intravitreal injections of the pharmacological inhibitor z-VDVAD-fmk (z-VDVAD) protected RGC from death for 15 days after ONC. Treatment of eyes with z-VDVAD suppressed cleaved caspase-2 activation by >85% at 3-4 days after ONC. Increasing concentrations of z-VDVAD protected greater numbers of RGC from death at 15 days after ONC, up to a maximum of 60% using 4000 ng/ml of z-VDVAD, compared to PBS treated controls. The 15-day treatment with 4000 ng/ml of z-VDVAD after ONC suppressed levels of cleaved caspase-2 but no significant changes in levels of cleaved caspase-3, -6, -7 or -8 were detected. Although suppression of caspase-2 protected 60% of RGC from death, RGC axon regeneration was not promoted. These results suggest that caspase-2 specifically mediates death of RGC after ONC and that suppression of caspase-2 may be a useful therapeutic strategy to enhance RGC survival not only after axotomy but also in diseases where RGC death occurs such as glaucoma and optic neuritis.
منابع مشابه
Caspase inhibition in neuroinflammation induced by soluble β amyloid monomer, protects cells from abnormal survival and proliferation, via attenuation of NFқB activity
Introduction: Evidence suggests that neuronal apoptosis in neurodegenerative diseases is correlated with inflammatory reactions. The beneficial or detrimental role of apoptosis in neuroinflammation is unclear. Elucidating this question may be helpful in management of neurodegenerative diseases. Since TNF-α is able to induce apoptosis as well as increased viability of the cells by activation ...
متن کاملChloride channel protein 2 prevents glutamate-induced apoptosis in retinal ganglion cells
Objective(s): The purpose of this study was to investigate the role of chloride channel protein 2 (ClC-2) in glutamate-induced apoptosis in the retinal ganglion cell line (RGC-5). Materials and Methods: RGC-5 cells were treated with 1 mM glutamate for 24 hr. The expression of ClC-2, Bax, and Bcl-2 was detected by western blot analysis. Cell survival and apoptosis were measured by 3-(4,5-dimeth...
متن کاملCaspase-2 Is Upregulated after Sciatic Nerve Transection and Its Inhibition Protects Dorsal Root Ganglion Neurons from Apoptosis after Serum Withdrawal
Sciatic nerve (SN) transection-induced apoptosis of dorsal root ganglion neurons (DRGN) is one factor determining the efficacy of peripheral axonal regeneration and the return of sensation. Here, we tested the hypothesis that caspase-2 (CASP2) orchestrates apoptosis of axotomised DRGN both in vivo and in vitro by disrupting the local neurotrophic supply to DRGN. We observed significantly elevat...
متن کاملBuyangHuanwu decoction (BYHWD) protects against retinal ischemic injury
Severe ipsilateral or bilateral carotid artery stenosis or occlusion is the most common cause of ocular ischemic syndrome (OIS). This study aimed to evaluate the protective effects of BuyangHuanwu decoction (BYHWD) against the retinal ischemia induced by ligation of carotid arteries in rats. The effects of BYHWD (0.64 g/kg, i.g.) on ischemia-induced retinal damage were examined with histologica...
متن کاملInvolvement of caspase-6 and caspase-8 in neuronal apoptosis and the regenerative failure of injured retinal ganglion cells.
To promote functional recovery after CNS injuries, it is crucial to develop strategies that enhance both neuronal survival and regeneration. Here, we report that caspase-6 is upregulated in injured retinal ganglion cells and that its inhibition promotes both survival and regeneration in these adult CNS neurons. Treatment of rat retinal whole mounts with Z-VEID-FMK, a selective inhibitor of casp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012